Banach’s Continuous Inverse Theorem and Closed Graph Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Banach's Continuous Inverse Theorem and Closed Graph Theorem

The terminology and notation used here have been introduced in the following articles: [3], [4], [2], [15], [11], [14], [1], [5], [13], [12], [19], [20], [16], [7], [17], [8], [18], [9], and [6]. Let X, Y be non empty normed structures, let x be a point of X, and let y be a point of Y . Then 〈x, y〉 is a point of X × Y. Let X, Y be non empty normed structures, let s1 be a sequence of X, and let ...

متن کامل

Some forms of the closed graph theorem

In this paper we shall establish some forms of the closed, graph theorem for locally convex spaces, using the approach of Ptak(l7). Our interest is in classifying pairs of locally convex spaces (E, F) which have the property that every closed graph linear mapping T: E -> F is continuous; if (E,F) has this property then we shall say that (E, F) is in the class *&. \is# is a particular class of l...

متن کامل

An Inverse Spectral Theorem

We prove a substantial extension of an inverse spectral theorem of Ambarzumyan, and show that it can be applied to arbitrary compact Riemannian manifolds, compact quantum graphs and finite combinatorial graphs, subject to the imposition of Neumann (or Kirchhoff) boundary conditions.

متن کامل

The Graph Minor Theorem

2 Properties excluding a planar graph 3 2.1 Path-width and tree-width . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Excluding a forest . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Planar graphs and sleeve unions . . . . . . . . . . . . . . . . . . 10 2.4 Planar graphs and grids . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Families with bounded tree-width . . . . . . . ....

متن کامل

On Petersen's graph theorem

In thiq paper we prove the following: let G be a graph with k edges, wihich js (k l)-edgeconnectd, and with all valences 3k k. Let 1 c r~ k be an integer, then (3 -tins a spanning subgraph H, so that all valences in H are ar, with no more than r~/r:] edges. The proof is based on a useful extension of Tutte’s factor theorem [4,5], due to JN&Z [3]. For other extensions of Petersen’s theorem, see ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2012

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-012-0032-y